If it's not what You are looking for type in the equation solver your own equation and let us solve it.
750-5x-4.9x^2=0
a = -4.9; b = -5; c = +750;
Δ = b2-4ac
Δ = -52-4·(-4.9)·750
Δ = 14725
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14725}=\sqrt{25*589}=\sqrt{25}*\sqrt{589}=5\sqrt{589}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5\sqrt{589}}{2*-4.9}=\frac{5-5\sqrt{589}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5\sqrt{589}}{2*-4.9}=\frac{5+5\sqrt{589}}{-9.8} $
| 6a–10=3a+17 | | 4m^2+25m-56=0 | | 13x+2x+5x+85=95 | | 1/3b=-9 | | 2x-15=-3x+20 | | 2(x/2+7)=12 | | 7(3-x)+2x=11 | | –1/3x+2=2/3x–1 | | 4.8x=6.24 | | (5x-98)+67=(23x-2) | | 4x²-28x+45=0 | | (5x-98)=(23x-2) | | r=43/5 | | 155+137+25=x | | 5/6r=19/5 | | 1x+4x+5X=90 | | 16x+4+100=180 | | 3x+2x=1.80 | | x^2-5/12x-1/4=0 | | 80=5/6k | | 2x+8-5×=23 | | 1/2x3(x+4)=2/3 | | 14x+13+5x+15=180 | | 700=8x | | )8b+5=29 | | 7-2(4x-7)=-43 | | 135=5x-5(4x=9) | | 6u+12+4u+18=40 | | 22=−5x +15 | | 67=(5x+98)+(23x-2) | | 48+90-x=2/3x-180 | | 18=-6x+36 |